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Warming seas affect the structure and function of marine 
communities by altering distributions of food sources, 
influencing reproductive behaviours and changing 

the range of habitats that fall within species’ thermal limits1–5. 
These impacts are especially important in coastal areas of the 
Mediterranean Sea—a biodiversity hotspot that provides food and 
trade for residents from over 20 countries6,7 (Extended Data Fig. 3)  
and already represents one of the world’s most heavily impacted 
ecosystems8,9. Shallow continental shelves are highly vulnerable to 
thermal stress, and these waters account for almost three times the 
proportional area of the Mediterranean Sea compared with glob-
ally (20 versus 7.6%)10. Consequently, the average sea surface tem-
perature (SST) in the Mediterranean will be up to 2.8 °C warmer 
by 210011,12. However, disparities in seasonal warming complicate 
predictions of how fish communities that occupy these waters will 
respond to climate change13–15. IPCC Special Report on Emissions 
Scenarios (SRES) A2 projections indicate that winter warming of 
coastal SST will increase at twice the rate of summer warming, with 
a forecast average winter increase of 1.85 °C by 2040 (compared 
with 0.76 °C in summer; Fig. 1a,b). Yet, while environmental con-
straints on ecosystems are often more apparent during particular 
seasons16–19, few studies disentangle seasonal effects when assessing 
how SST influences communities (but see refs. 1,20).

We reveal a robust relationship between SST and the composi-
tions of coastal Mediterranean fish communities. However, we find 
that winter warming will have a far greater effect on coastal commu-
nities than summer warming, highlighting the importance of incor-
porating seasonal effects in models. We used a conditional random 
fields (CRF) model that identified associations among the distribu-
tions of 215 coastal fish species (approximately one-third of species 
occurring in the Mediterranean Sea) and quantified how these asso-
ciations changed in response to summer and winter SST across a 
grid of 8,154 spatial cells (Extended Data Fig. 1). Spatial generalized 
additive models (GAMs) were used to assess variation in predicted 
community compositions. In contrast with the effects of changes in 
summer SST, which were statistically significant but comparatively 

weak, variation in winter SST had a strong influence on the num-
ber of fish species in each grid cell (species richness), the diversity 
of functional traits exhibited by those species (functional diversity) 
and the degree to which species co-occur with others from the same 
functional group (network modularity) (Fig. 1 and Supplementary 
Table 2). Species richness followed a west–east gradient, declining 
rapidly as winter SST approached and exceeded 12–13 °C (Fig. 1c, 
Extended Data Fig. 2 and Supplementary Table 2). Model simula-
tions using IPCC climate scenarios for two time points (1980 and 
2040) revealed that future warming will have profound impacts on 
coastal communities, with over half (60%) of our 8,154 observations 
projected to support fewer species in 2040. In contrast, 36% were 
projected to support more species in 2040. Magnitudes of change 
will not be spatially uniform. The greatest losses are expected in 
species-rich regions including areas in the Alboran Sea (one of the 
most intensively fished coastal regions in the Mediterranean21) and 
the Central Gulfs near Tunis and Tripoli (Fig. 2a and Extended 
Data Figs. 2–5). As our model did not include indicators of fish-
ing pressure or forecast how fishing tactics may change, we cannot 
accurately infer how Mediterranean fishing pressures and warming 
temperatures will interact to exacerbate shifts in coastal fish compo-
sition. Insights from this study will help to inform the management 
of fish stocks moving forward, in particular by raising the need 
for research to explore how population growth, natural resource 
harvesting and aquaculture practices will influence the economic 
effects of climate change22.

Much of the Mediterranean’s coastal shelf will be at least 1.5 °C 
warmer in winter by 2040, with few grid cells remaining below 
the 12–13 °C threshold (Fig. 1b and Extended Data Fig. 2). Such 
warming is expected to have negative consequences for ecosystem 
functioning and marine productivity12,23,24. However, our findings 
indicate that locations remaining below the threshold (primarily in 
the Adriatic and Aegean seas) could be partially buffered against 
losses of richness and might even gain species by 2040 (Fig. 2a and 
Extended Data Figs. 2 and 4). Projections indicate that warming 
winter SST will not affect the distributions of species equally (Fig. 3a  

Rapid winter warming could disrupt coastal 
marine fish community structure
Nicholas J. Clark   1 ✉, James T. Kerry   2 and Ceridwen I. Fraser   3

Marine ecosystems are under increasing threat from warming waters. Winter warming is occurring at a faster rate than summer 
warming for ecosystems around the world, but most studies focus on the summer. Here, we show that winter warming could 
affect coastal fish community compositions in the Mediterranean Sea using a model that captures how biotic associations 
change with sea surface temperature to influence species’ distributions for 215 fish species. Species’ associations control how 
communities are formed, but the effect of winter warming on associations will be on average four times greater than that of 
summer warming. Projections using future climate scenarios show that 60% of coastal Mediterranean grid cells are expected 
to lose fish species by 2040. Heavily fished areas in the west will experience diversity losses that exacerbate regime shifts 
linked to overexploitation. Incorporating seasonal differences will therefore be critical for developing effective coastal fishery 
and marine ecosystem management.

NaTuRe ClImaTe ChaNge | VOL 10 | SEpTEMbER 2020 | 862–867 | www.nature.com/natureclimatechange862

mailto:nicholas.j.clark1214@gmail.com
http://orcid.org/0000-0001-7131-3301
http://orcid.org/0000-0003-2209-3757
http://orcid.org/0000-0002-6918-8959
http://crossmark.crossref.org/dialog/?doi=10.1038/s41558-020-0838-5&domain=pdf
http://www.nature.com/natureclimatechange


www.manaraa.com

ArticlesNaturE ClIMatE CHaNgE

and Extended Data Figs. 6 and 7). Benthic and demersal dwell-
ers will be more likely to show a range contraction than pelagic 
species (Fig. 3b and Supplementary Appendix 3), consistent with 

evidence that marine species capable of shifting their ranges in 
response to warming tend to have faster growth rates, earlier ages 
at maturity and shorter life spans1,25. As many benthic and demersal 
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Fig. 1 | Winter SST gradients have larger effects on mediterranean fish communities. a,b, predicted changes in summer (July to August) SST (a) and 
winter (January to March) SST (b) between 1980 and 2040 across the coastal shelf. c, partial effects of summer (top) and winter SST (bottom) on the 
species richness (left), functional diversity (middle) and network modularity (right) of observed fish communities in 1980. SST covariates were included in 
spatial GAMs. black lines show mean effects. Shaded areas show effect 95% confidence intervals.
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Fig. 2 | Warming SSTs will lead to pronounced changes for fish communities across the mediterranean Sea. a–c, predicted changes in fish community 
species richness (a), functional diversity (b) and network modularity (c) between 1980 and 2040 based on SST projections using IpCC A2 climate 
observations. d, predicted difference in SST warming rates between winter and summer seasons. See Supplementary Fig. 3 for maps of historical and 
future projections for each community metric. predictions were made with a spatial CRF model that included presence versus absence for 215 fish species 
and covariates describing summer and winter SST.
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coastal species are specialized endemics, our study contributes to 
previous evidence that some endemics will experience substantial 
climate-driven range contractions across the Mediterranean Sea26. 
Areas that remain cool in winter could serve as important refugia 
for species that prefer colder waters, but this will rely on the ability 
of at least some species to adapt to temperature changes by shift-
ing their distributions, as has been demonstrated for species in the 
North Sea1. While multiple studies have identified similar potential 
for cool-water refugia in the Adriatic and Aegean seas2,26, we are 
not aware of empirical evidence showing that meaningful shifts to 
cooler refugia are taking place.

Many studies exploring how climate change impacts food secu-
rity recognize that ecosystem services are dependent not only on 
richness, but also on how functional niche spaces are occupied2,22,24. 
We assessed the relationship of SST with the capacity of grid cells 
to harbour functionally diverse niches to gain insights into mecha-
nisms that structure fish communities. Unexpectedly, we found that 
despite being less rich, cells with warmer winter SST were more func-
tionally diverse, supporting species with a broader range of dietary 
and habitat use traits (Fig. 1c and Supplementary Table 2). Once 
again, winter SSTs of 12–13 °C represented a threshold for changes 
in functional diversity, while the effects of summer SST were notably 
weaker (Figs. 1c and 2b and Supplementary Fig. 4). Examination of 
5,266 co-occurrence relationships showed that network modularity, 
which describes the extent to which species co-occur with species 
from the same functional group, decreased as winter SST increased 
(Figs. 1c and 2c). These findings collectively suggest that winter SST 
acts as an environmental filter that restricts functional equivalence 
in warmer waters. Steep declines in species richness and reductions 
in network modularity in locations with winter SSTs above 12–13 °C 
primarily indicate losses of functionally redundant species, leading 
to greater diversity metrics when the species that remain are func-
tionally dissimilar. For example, in grid cells off Tunis, where com-
munities are expected to cross the 13 °C winter SST threshold and 
show declines in richness (Supplementary Figs. 3–5), the peacock 
wrasse (Symphodus tinca) is expected to be lost while its most func-
tionally similar species, the painted comber (Serranus scriba), will 
remain. As both species fill similar functional niches (feeding on 
invertebrates around rocky reefs in the neritic zone), the loss of one 
does not reduce functional diversity. Similar relationships between 
SST and functional redundancy have been found for coral reef fish 
assemblages across the Pacific27, suggesting that an environmental 

filtering effect that promotes functional equivalence in cooler waters 
may be a broad-scale phenomenon. Despite the predicted costs of 
decreasing richness with future warming, driven primarily by con-
tracting ranges for demersal and benthic dwellers, our analysis indi-
cates that some Mediterranean locations will be buffered against 
losses of functional diversity (Fig. 2b). To further understand how 
individual fish populations will respond to warming temperatures, 
additional information on species’ thermal tolerances and other 
relevant predictors will be necessary to forecast changes in fitness 
and the carry-on effects on relative abundances3,22. Moreover, as we 
excluded species that did not have associated trait or phylogenetic 
data, our findings cannot rule out the possibility of future invasions 
or migrations of unmodelled species that may be able to fill some 
niche gaps freed by lost species.

By allowing species’ distributional associations to vary in 
response to SST, our model could uniquely identify mechanisms 
that underlie our finding of increased functional niche filling across 
winter SST gradients (Supplementary Appendix 3). Winter SST had 
a strong positive influence on nearly half (41.5%) of the 5,266 iden-
tified relationships, while summer SST effects were on average four 
times weaker (the remaining 58.5% of relationships did not co-vary 
with SST gradients; Supplementary Table 3). Associations for two 
invasive species—the shrimp scad (Alepes djedaba) and Spanish 
mackerel (Scomberomorus commerson)—illustrate this result. Both 
species have profound impacts on the abundances of native spe-
cies and are increasingly captured as bycatch in commercial and 
residential fisheries28,29, yet they occupy different pelagic functional 
spaces, with the scad feeding on inshore reef invertebrates and the 
mackerel feeding primarily on small fishes. This lack of functional 
overlap allowed each species to be 73% more likely to occur when 
the other was present, but the relationship was modulated by winter 
SST (Fig. 4). The pair only co-occurred in the warmest 40% of their 
winter SST ranges (compared with co-occurring throughout their 
summer SST ranges), with the effect of the mackerel’s presence on 
the scad’s occurrence increasing by 76% for every 1.7 °C increase in 
winter SST (Fig. 4). These estimated association strengths suggest 
that winter warming will open new areas for these invasive species 
to co-occur across the Mediterranean in the future.

Our projected changes to Mediterranean fish communities point 
to new challenges for the stability of fisheries-based economies. 
Landings for demersal and pelagic fishes in the Mediterranean Sea 
have been declining since the mid-1990s for a range of important  
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Fig. 3 | Range responses will differ across fish species, with bottom dwellers expected to show substantially reduced ranges in response to warming 
temperatures. a,b, predicted changes in fish species’ geographical ranges between 1980 and 2040 for species of economic and conservation importance, 
including non-indigenous species with the greatest potential impacts (according to the General Fisheries Commission for the Mediterranean) (a); and 
all 215 species, arranged by water column habitat use (b). Range sizes were calculated by summing presence/absence vectors across all 8,154 grid cells. 
Changes were calculated by dividing the 2040 range size by the 1980 range size. The boxplots in b show median values (lines within boxes), 25 and 75% 
quantiles (hinges), and 5 and 95% quantiles (whiskers).
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species30. In contrast, crustacean and cephalopod landings are 
increasing, suggesting that regime shifts are already occurring21. 
Our comparison of fishing pressures, calculated as total fishery 
landings per km2 of coastal shelf area, overwhelmingly showed that 
heavily fished areas of the west will exhibit some of the most pro-
nounced losses in diversity and increases in modularity (Extended 
Data Fig. 5), both of which are signs of ecosystems trending towards 
collapse. Indeed, western Mediterranean fisheries are verging on 
being unprofitable due to long histories of overexploitation21. In 
contrast, fisheries stocks in the more artisanally fished eastern zones 
appear to be declining at a slower rate21,30, and our analyses indicate 

that these areas could gain diversity and experience more subtle 
changes in species richness (Extended Data Fig. 5).

Worldwide, winter warming is expected to proceed at a faster 
rate than summer warming for many marine and terrestrial eco-
systems. Marked increases in winter SSTs predicted for shallow 
coastal waters will have a disproportionately large influence on 
the composition of fish communities in the Mediterranean, most 
notably causing considerable loss of fish species and exacerbat-
ing regime shifts in fishery-dependent regions. Winter warming 
is likely to be a major driver of long-term trends in fish diversity 
and community composition in the Mediterranean. Our research 
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Fig. 4 | Winter SSTs impact how species associate and assemble into communities. Top: the Spanish mackerel (S. commerson; left) and shrimp scad 
(A. djedaba; right) are two widespread invasive species that exhibit a strong association: the presence or absence of one predicts whether or not the 
other will be present in a given location. Analysis of how this association relates to SST showed that increasing winter SST (middle) leads to a more 
prominent association, while the association does not change across summer SSTs (bottom). black lines show mean effects. Shaded areas show effect 
95% confidence intervals. Rugs show observed presences (tops of graphs) and observed absences (bottoms of graphs). photograph in the top left panel 
is adapted from John E. Randall under a Creative Commons licence (https://creativecommons.org/licenses/by-nc/3.0/au/). photograph in the top right 
panel is reproduced from Rickard Zerpe under a Creative Commons licence (https://creativecommons.org/licenses/by/2.0/).
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highlights the critical importance of incorporating seasonal differ-
ences in assessing the ecological impacts of climate change. This 
information, enabling greater insight into how communities will 
respond to global warming, will be crucial for policymakers and 
managers in the development of future ecosystem and resource 
management strategies.
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methods
The FishMed database. FishMed is an open-source database that captures 
historical and projected distributions for fish species across 8,154 spatial grid cell 
locations in the Mediterranean Sea’s continental shelf31 (Fig. 1; note that blue areas 
in the maps represent areas with no data). The database includes evolutionary 
(a phylogenetic tree) and functional trait data (a matrix of habitat, diet and 
morphological variables) for select fish species, as well as back-projected (to the 
period 1961–1980) and forward-projected (to 2040–2059 and 2080–2099) SST 
according to the IPCC SRES A2 scenario32. SRES A2 was chosen as it predicts 
intermediate climate forcing compared with other SRES scenarios33 and because 
the availability of undersea three-dimensional projections has led to this scenario 
being the model of choice for studying climate change in the Mediterranean34. 
Historical distributions were compiled using the Fishes of the North-Eastern 
Atlantic and the Mediterranean atlas35. This atlas combines regional datasets 
with expert knowledge and provides basin-wide information on the extent of 
occurrence of all Mediterranean fish species. Distributions were projected onto 
a spatial grid covering the Mediterranean’s shallow coastal shelf and filtered by 
clipping areas with depths known to be outside the vertical distributions occupied 
by each species using data on their bathymetric ranges and a bathymetry map of 
the Mediterranean Sea2, resulting in 8,154 locations for which the geographical 
distributions of 635 fish species are represented. The database also includes 
predicted species distributions for the two future climate scenarios, which were 
generated using single-species distribution models trained on SST values2,31. 
However, our model only relied on the historical observations of fish distributions 
that were originally compiled from trusted sources and expert opinion. We did 
not use future projections as data to avoid relying on observations that were the 
outcomes of earlier modelling and interpretation efforts. We removed species 
that did not have associated trait or phylogenetic data, as the absence of such 
data meant we could not accurately assess correlates of diversity or modularity. 
This resulted in 336 species including 140 benthic, 93 demersal and 103 pelagic 
species. We omitted species recorded in <10% or >90% of total observations, as 
estimating occurrence probabilities for binary outcomes that are too rare or too 
common leads to imprecise estimates of network topology36. Cut-off values were 
chosen as initial models revealed that the strong class imbalances for species 
outside these thresholds hampered the ability of cross-validation routines to 
estimate coefficients (that is, a cross-validation fold containing nearly all zeros 
or all ones is not informative for estimating effects of predictors37). The dataset 
covered 215 fish species including 105 benthic, 57 demersal and 53 pelagic 
species (see Supplementary Appendix 1 for details of data filtering). We calculated 
mean summer SST (averaged across the three warmest months; that is, July to 
September) and winter SST (averaged across the three coldest months; that is, 
January to March) for each grid cell in the 1980 and 2040 periods. Effects of 
temperature on reproductive success or metabolism were not available for all of 
our studied species, so we did not include parameters to capture how thermal 
tolerances will impact range shifts.

Modelling co-occurrence with CRFs. A key step in predicting biodiversity 
responses to changing climates is determining how community structures change 
along environmental gradients. Co-occurrence patterns between species are useful 
in this domain as they can help build a picture of how communities form. Whether 
two species are more or less likely to co-occur in certain habitats can influence 
biotic interactions such as competition or facilitation38–40. Studying co-occurrences 
across changing environments can uncover mechanisms influencing community 
assembly, such as abiotic filters that prevent the establishment of species with 
particular traits or systematic drivers of local abundances41,42. Accounting for 
co-occurrences should therefore improve model-based predictions of species’ 
distributions across heterogeneous environments43,44.

Undirected graphical models such as CRFs are gaining traction for their 
ability to outperform null models when uncovering co-occurrences and projecting 
multispecies distributions45,46. CRFs represent conditional dependencies (termed 
herein as associations to align with network notation) among variables as an 
undirected network, and can incorporate covariates to quantify how associations 
vary along environmental gradients47,48. The ability to determine effects of 
other species, environmental variables and species × environment interactions 
on distributions can help disentangle mechanisms that influence community 
composition in changing landscapes.

We applied CRFs using the framework described by Clark et al.49 and references 
therein. Briefly, the log-odds of observing species j was modelled as:

log
P yj ¼ 1jynj; x
� 

1� P yj ¼ 1jynj; x
� 

" #
¼ αj0 þ βTj x þ

X

k:k≠j

αjk0 þ βTjkx
 

yk ð1Þ

where yj is a vector of binary observations for j, y\j represents vectors of binary 
observations for all other species, αj0 is the intercept and βTj

I
 is a coefficient for the 

effect of covariate x on j’s probability of occurrence. Association parameters are 
represented by αjk0 and βTjkx

I
 (defined below). Parameterization of the likelihood was 

estimated using LASSO regularized logistic regression, which forces coefficients 
to zero if they have minimal effects. This ensured that the model only included 
well-supported biotic effects. Tenfold cross-validation was implemented to 

choose penalties that minimize error. Because CRFs are undirected, coefficients 
representing species interactions and coefficients representing effects of covariates 
on these interactions must be symmetrical (that is, αjk0 = αkj0 and βTjkx ¼ βTkjx

I
). 

Symmetry was guaranteed by averaging the corresponding parameter estimates, 
ensuring that parameters were unified into a network only after maximizing 
each species’ conditional log-likelihood50. If αjk0 = 0, distributions of j and k were 
conditionally independent after accounting for covariates and all other species.  
If αjk0 ≠ 0 but βTjkx ¼ 0

I
, species’ occurrences were conditionally dependent, but the 

strength of this association did not co-vary with x.
The above CRF accounted for all combinations of other species and 

environmental covariates (winter and summer SST) on a species’ occurrence 
probability but did not account for possible spatial autocorrelation. However, a key 
feature of spatial occurrence datasets such as FishMed is the non-independence 
of the source data that arises due to possible spatial autocorrelation, which can 
result in biased and inflated parameter estimates when using statistical models that 
ignore spatial structure. We therefore built a second CRF that included smoothed 
spatial regression splines in the linear predictor to assess whether incorporation 
of spatial terms improved the model fit. Central coordinates for each grid cell 
were used to construct penalized Gaussian process regression splines that capture 
non-independence among spatially adjacent cells51,52. Isotropic Gaussian processes 
are appropriate in this context as we have no previous evidence that autocorrelation 
in fish distributions are non-stationary, although we recognize that other methods 
to capture spatial effects are available in competing models. For both models, 
continuous predictors were scaled to unit variance. We calculated model fit metrics 
(the proportion of true predictions, positive predictive value, sensitivity and 
specificity) to assess performance and to validate our models (see Supplementary 
Appendix 2 for details of CRF fitting and metric calculations). Across all metrics, 
the spatial CRF was the better-performing model (Supplementary Table 1), 
correctly predicting >92% of the 1,753,110 total binary observations (215 
species × 8,154 observations), compared with 88% for the non-spatial model. We 
therefore present the results from the spatial model herein.

We found that, of 46,010 possible pairwise species associations, 5,266 (11.5%) 
acted as important predictors of variation in community composition. Nearly half 
(41.5%) of these associations were environmentally dependent, becoming more 
positive as SSTs warmed (Supplementary Table 3 and Supplementary Appendix 3). 
This broadly demonstrated the utility of our approach by showing that the presence 
of one species acts as an increasingly useful signal of another’s likelihood of being 
present as temperatures increase. The effects of changing winter SST on these 
pairwise associations were over two times larger than summer SST effects (mean 
change in association strength = 0.045 versus 0.019, respectively; Supplementary 
Table 3 and Supplementary Appendix 3). When considering those pairs that were 
less likely to co-occur in warmer areas, mean effects on association strengths were 
−0.016 versus −0.006 for winter and summer SST, respectively (Supplementary 
Table 3 and Supplementary Appendix 3).

Estimated associations may change if other predictors are added to the model, 
as many of the inferred co-occurrence associations could be the result of joint 
responses to missing covariates. However, while these missing predictors may limit 
network inference, a major benefit of our framework is that they should not heavily 
impact prediction. Considering that much of the variance captured by our model 
was attributed to associations, and that the model achieved robust prediction 
accuracy, inclusion of multispecies data should at least partially account for missing 
predictors, such as nutrient densities or salinity, that may play important roles in 
determining species’ range limits20. Ecological forecasting studies have generally 
not recognized this rich information, instead relying on remote-sensing data for 
which concerns have been raised over temporal mismatch, incomplete coverage 
or areal unit problems. The CRF approach also has the added benefit of helping 
avoid the potential problem of regression dilution bias that occurs when inclusion 
of predictors that are difficult to measure (for example, habitat availability or 
complexity) leads to measurement errors that sometimes have profound effects on 
coefficient estimates53.

Estimating community diversity and network composition across SST 
gradients. We used the spatial CRF to predict species’ distributions for the 
1980 scenario and to calculate model-based estimates of species richness, 
functional diversity and phylogenetic diversity for each grid cell. Using these 
predictions (rather than observed data) allowed us to account for uncertainty 
when assessing influences of SST on community structure, and facilitated 
direct comparisons with future projections (see below). To calculate functional 
diversity, we applied hierarchical clustering to a distance matrix representing traits 
previously highlighted for their ability to uncover assembly patterns of coastal 
fish communities54,55. These included ten binary variables representing species’ 
use of habitat categories, six dietary binary variables and a continuous body 
length variable. The functional dendrogram and phylogenetic tree (stored in the 
FishMed database) were used to calculate standardized diversity metrics based on 
the net relatedness index56,57, which were then included as response variables in 
GAMs to assess how diversity changed along SST gradients. For each GAM, we 
included smooth spline functions for winter and summer SST (both as thin plate 
regression smooths) to account for nonlinear relationships. To control for spatial 
autocorrelation, we included Gaussian process spatial smooths using geographical 
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coordinates of grid cells (the Gaussian process smooth function was found to 
yield a better fit compared with a thin plate smooth; see Supplementary Appendix 
3 for details on GAMs). However, comparisons of functional and phylogenetic 
diversity were highly correlated (Pearson’s R2 = 0.79), so we focused our analyses on 
functional diversity only.

Next, we tested whether co-occurrence networks were predicted to become 
more or less modular with increasing SST. Modularity assesses the degree to 
which a network is composed of densely connected groups of nodes that exhibit 
sparse associations with other groups58. By assigning species to groups based on 
habitat use in the water column (see details below) and estimating modularity, 
we could uncover useful insights into the mechanisms underlying variation 
in community composition. For example, high modularity would indicate 
that a species’ occurrence was more strongly associated with occurrences of 
species from the same group. This could reflect environmental conditions that 
influence one group more strongly than others (for example, the presence or 
absence of an upwelling site may have stronger influences on distributions 
of pelagic than bottom-dwelling species). Low modularity may indicate a 
dynamic ecosystem composed of species that associate with a diverse array 
of partners. We integrated occurrence probabilities with estimated pairwise 
associations to generate adjacency matrices for each observation, allowing us to 
ask how network topology and community structure were expected to change. 
Specifically, association edges were predicted for each observation and then 
converted into a weighted, undirected adjacency matrix. If a linear prediction 
for a given species in a given grid cell fell below our threshold of 0.5, the species 
was considered absent from the cell and could not participate in the network, 
and any edges that would otherwise have connected to that species (from its 
associated partners) would be removed. The resulting networks (one for each 
grid cell in the data) were based on co-occurrence associations, rather than 
direct (or indirect) species interactions such as predator–prey relationships or 
facilitation. This provided information on community assembly, as whether 
species from different functional groups were more or less likely to co-occur 
in certain habitats could reflect underlying drivers of community composition. 
However, these networks did not reflect biotic interactions such as competition or 
facilitation, so they could not be validated against empirical interaction estimates 
from the literature. We calculated a standardized modularity metric for each 
observation by grouping species based on their vertical distributions in the water 
column (assigned to one of three categories: benthic, demersal or pelagic) and 
extracting the residuals from a linear regression between modularity (calculated 
using functions in the igraph R package59) and richness. Residuals were used for 
assessment of patterns because of the known bias that increasing richness can 
have on estimates of network modularity60. As above, we accounted for possible 
nonlinear relationships by fitting GAMs with thin plate regression smooths for 
SST predictors and a Gaussian process smooth for geographical coordinates. For 
all GAMs, comparisons of variograms for raw data and model residuals suggested 
that spatial smooth effects efficiently captured most of the spatial autocorrelation 
in the data (Supplementary Appendix 3).

Projecting changes in communities using the IPCC SRES A2 scenario. SST 
values across our coastal grid are predicted to warm by an average of 0.76 °C in 
summer and 1.85 °C in winter between 1980 and 2040. A final step in our analysis 
was to draw inferences about how communities may change under warming 
conditions. Combining our CRF results with SST values for 1980 and 2040 
scenarios, we predicted species’ future distributions by simulating from our model’s 
posterior using a multivariate boosted regression tree61. We repeated the steps 
above to calculate expected richness, diversity and network modularity for each 
grid cell. While we did not include indicators of fishing zones or fishing pressure as 
predictors in the model, mapping our estimates for both time periods allowed us 
to assess how communities are expected to change under the future scenario and 
to draw inferences about how changes may vary across different Mediterranean 
fishing zones. For distribution projections, species were expected to occur in a cell 
if their predicted probability of occurrence was ≥0.5.

Analyses were conducted in R version 3.3.3 (ref. 62). CRF models were fit  
using functions in the MRFcov R package63. GAM models were fit using functions 
in the mgcv R package64. Data manipulation and figure generation primarily  
relied on the packages dplyr65, ggplot2 (ref. 66) and ape67. A schematic (Extended 
Data Fig. 1) and explanation of the model framework are included in the 
Supplementary Information.

Data availability
The Mediterranean fish binary occurrence data and IPCC SRES A2 SST projections 
that support the findings of this study are described in ref. 31 and are available in the 
Ecological Archives (accession E096-203-D1).

Code availability
All R code needed to extract data from public repositories, replicate all of the 
analyses and generate the figures is presented in the Supplementary Information 
file and stored in a licensed GitHub repository (https://github.com/nicholasjclark/
Mediterranean-Fishes-MRF).
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Extended Data Fig. 1 | Schematic overview of the ensemble modelling approach and examples of key outputs produced at each step of analysis. 
Schematic overview of the ensemble modelling approach and examples of key outputs produced at each step of analysis. A spatial Conditional Random 
Fields (CRF) model was trained on 1980 binary occurrence vectors for 215 fish species across 8,154 coastal sample sites in the Mediterranean Sea, using 
mean summer and mean winter Sea Surface Temperatures as external predictors. To generate predictions for a range of climate scenarios, simulation from 
the CRFs posterior predictive distribution was accomplished using a multivariate boosted regression tree that learned complex, nonlinear relationships 
and prioritised those predictors that had large influences on covariance in species’ occurrence probabilities. These simulations allowed for more 
direct comparisons among historical and future predictions, avoiding the biases that can occur when comparing observed and predicted community 
measurements.
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Extended Data Fig. 2 | Predicted historical and future metrics of fish community species richness, functional diversity and network modularity across 
coastal grid cells in the mediterranean Sea. predicted historical (1980) and future (2040) metrics of fish community species richness, functional  
diversity and network modularity across coastal grid cells in the Mediterranean Sea. predictions were based on sea surface temperate (SST) estimates 
using IpCC SRES A2 climate scenarios. Note that functional diversity and network modularity metrics are unitless and are therefore presented as 
standardised estimates where very low: ≤ 7.5 percentile; low: 7.5 – 37.5 percentile; moderate: 37.5 – 62.5 percentile; high: 62.5 – 92.5 percentile;  
very high: ≥ 92.5 percentile.
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Extended Data Fig. 3 | geographical distributions of coastal fishing zones and populous coastal cities in the mediterranean Sea. Geographical 
distributions of coastal fishing zones (Geographical Subareas; GSAs) and populous coastal cities in the Mediterranean Sea. Regions highlighted in colour 
correspond to key geographical areas that are expected to experience marked changes in their coastal fish communities in response to warming sea 
surface temperatures.
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Extended Data Fig. 4 | Relationships between winter warming classification and predicted changes in coastal fish community richness, functional 
diversity and network modularity between 1980 and 2040 IPCC SReS a2 climate scenarios. (a) Coastal sample sites in the Mediterranean Sea classified 
according to whether a grid cell is predicted to surpass a 13 °C winter sea surface temperature (SST) threshold by the year 2040. (b) Relationships 
between winter warming classification and predicted changes in coastal fish community richness, functional diversity and network modularity between 
1980 and 2040 IpCC SRES A2 climate scenarios. boxplots show: medians (lines within boxes), 25% and 75% quantiles (hinges) and 5% and 95% 
quantiles (whiskers).
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Extended Data Fig. 5 | average predicted changes in coastal fish species community richness, functional diversity and network modularity across gSas 
between 1980 and 2040 IPCC SReS a2 climate scenarios. (a, b, c) Geographical variation in fishing pressures across Mediterranean Sea GSAs, calculated 
as total landings per km2 of coastal shelf area, for total fishes, demersal species and pelagic species. (d, e, f) Average predicted changes in coastal fish 
species community richness, functional diversity and network modularity across GSAs between 1980 and 2040 IpCC SRES A2 climate scenarios.
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Extended Data Fig. 6 | Predicted latitudinal distributions in the 1980 and 2040 time periods for species of economic and conservation importance. 
predicted latitudinal distributions in the 1980 and 2040 time periods for species of economic and conservation importance, including non-indigenous 
species with the greatest potential impacts (according to the General Fisheries Commission for the Mediterranean). Range sizes were calculated by 
summing the predicted presence / absence vectors in each time period across all 8,154 grid cells.
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Extended Data Fig. 7 | Predicted longitudinal distributions in the 1980 and 2040 time periods for species of economic and conservation importance. 
predicted longitudinal distributions in the 1980 and 2040 time periods for species of economic and conservation importance, including non-indigenous 
species with the greatest potential impacts (according to the General Fisheries Commission for the Mediterranean). Range sizes were calculated by 
summing the predicted presence / absence vectors in each time period across all 8,154 grid cells.
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